

Orbitales Anfasen AXXAIR

Der Erfolg eines orbitalen Schweißvorgangs liegt vor allem in der Vorbereitung der zu schweißenden Teile. Unter den verschiedenen Schritten zu dieser Vorbereitung der Rohre ist die Herstellung einer an das Schweißverfahren angepassten Qualitätsfase von wesentlicher Bedeutung. Nach einem orbitalen Schnitt ist das Rohrende absolut rechtwinklig und gratfrei Danach muss eine Fase hergestellt werden, um eine für die Schweißnaht passende Geometrie herzustellen, insbesondere an der Innenseite

(Durchdringung) Bei Wanddicken über 3 mm bedeutet ein einfaches Schweißen durch Aufschmelzen

des Materials ein zu großes Schmelzbadvolumen, dass noch eine gute geometrische Ausführung der Schweißnaht gewährleistet wäre.

Dem begegnet man durch Anfasen, denn die Fase ermöglicht eine Reduzierung

des aufzuschmelzenden Materials und somit einen guten Einbrand. Daher sind im Allgemeinen mehrere Schweißlagen erforderlich, um die Schweißnaht fertigzustellen (Fülllage(n) und Decklage). Die Form der Fase ist durch die verwendeten Schweißmittel vorgegeben.

PATENTIERTES AXXAIR-KONZEPT

Die Orbital-Anfasmaschinen von AXXAIR verwenden einen Karbid-Schneidkopf, der sich mit hoher Geschwindigkeit dreht und so ein großes Volumen von Spänen mit einem einzigen Umlauf des Werkzeugs um das Rohr (orbital) abträgt.

Dieses patentierte Verfahrenkommt ohne Verwendung eines Schmiermittels aus: das Reinigen/ Abwaschen der Teile vor dem Schweißen ist nicht mehr erforderlich! Die Späne-Abtragsleistung der Karbid-Schneidplatten ist 10x höher als die der üblicherweise verwendeten Schneidplatten mit HSS-Werkzeugen (Schnellarbeitsstahl).

FLEXIBILITÄT, PRODUKTIVITÄT

Ausführung, Einstellung und Anfasen sind einfach und schnell durchzuführen. Der Durchmesserbereich jeder Maschine ist sehr groß und erfordert keine speziellen Spannbacken. Die Maschinengestelle von AXXAIR sind multifunktional und sowohl für orbitales Trennen und Schweißen einsetzbar

QUALITÄT

Die mit dem Karbid-Fräser realisierte Oberfläche ist sauber und gratfrei und kann daher sofort geschweißt werden. Unser Verfahren umfasst auch eine Verfolgung des Außenprofils des Rohrs, um Ovalitätsfehler des Rohrquerschnitts zu berücksichtigen. Die Fase wird so über den gesamten Umfang regelmäßiger.

TRAGBARKEIT

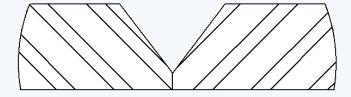
Die Maschinen sind tragbar und leicht zu transportieren. Sowohl für die Baustelle als auch für die Werkstatt geeignet. Ideale Schweißnahtvorbereitung für dickwandige Rohre mit Drahtzuführung.

Kontaktieren Sie uns für all Ihre Anfragen bezüglich der Technologie des orbitalen Anfasens.

Wir freuen uns darauf, unser Know-how mit Ihnen teilen und Ihnen die für Ihre Bedürfnisse geeignete Lösung vorstellen zu dürfen!

Orbitales Anfasen AXXAIR

- V-Fase oder J-Fase? -

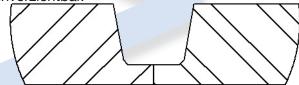

Es gibt zwei Arten von Fasen, die davon abhängen, ob es sich bei dem eingesetzte Schweißverfahren um ein manuelles oder ein automatisches Verfahren handelt: die V-Fase und die J- oder Tulpenformfase. Diese Bezeichnungen sind darauf zurückzuführen, dass die Verbindung der zwei vorbereiteten Kanten der Form dieser Buchstaben ähnelt.

Beim Orbitalschweißen werden die beiden Stege der abgefasten Teile aneinandergelegt. Es ist nur eine einfaches Schmelzverbindungsschweißen der beiden Stege erforderlich und anschließend wird die Fuge mit Schweißdraht gefüllt.

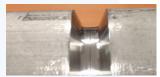
V-Fase

Beim manuellen TIG-Schweißen wird eine V-Fase mit oder ohne Steg - je nach Aneinanderlegen der gewählten Teile - bevorzugt. Sie wird als V-Fase bezeichnet, denn nach dem Aneinanderlegen der beiden Teile ähnelt die sich ergebende Form dem Buchstaben V. Durch einen Steg ist es im Allgemeinen möglich, die Deformation der Fugenflanken bei der Handhabung der Teile zu vermeiden, außerdem vermeidet er das Einsinken der Schweißnaht bei der Wurzellage (Einbrand).

Beim manuellen Schweißen erfolgt das Aneinanderlegen der Teile so, dass ein Spalt dazwischen liegt, der insbesondere die manuelle Drahtzufuhr, auch durch das Innere des Rohrs ermöglicht (Einbrandgeometrie).


Die verwendeten Fasenwinkel sind üblicherweise 30°, 37,5° und 45°. Diese Winkel hängen vor allem von der Anwendung, der Wanddicke der zu schwei-Benden Teile und dem Werkstoff ab. Beim orbitalen Anfasen in V-Form, bieten wir 3 Schneidköpfe an, die jeweils einem dieser Winkel entsprechen.

J-Fase (Tulpenform)


Diese Form ist bei automatisierten Schweißverfahrenund insbesondere beim Orbitalschweißen unverzichtbar.

Der Steg bei dieser Fasenart ermöglicht die Herstellung einer fein ausgeführten Rohr-Rohr-Verbindung, wodurch es im Allgemeinen möglich wird, einen Einbrand durch einfaches Aufschmelzen zu realisieren, das beste Mittel für eine präzise Kontrolle der Einbrandgeometrie.

Diese Art der Vorbereitung begrenzt auch das Metallvolumen, das zum Füllen der Schweißfuge aufgetragen werden muss. Der Winkel der J-Fase ist kleiner (im Allgemeinen 15 bis 20°), in Abhängigkeit von den Anwendungen. Die Steglänge muss die Realisierung einer einfachen Schmelzverbindungsnahtermöglichen, ohne an den Fugenflanken hochzuschweißen: 1,6 bis 2 mm Stegdicke bei 2 bis 2,5 mm Steglänge Diese Einstellungen sind sehr einfach und sind an den Karbid-Schneidkopf gebunden (im Gegensatz zur Einstellung bei Verwendung von HSS-Werkzeugen).

Da Zubehör (Rohrbogen, T-Stücke, Flansche etc.) normalerweise in V-Form vorbereitet werden, sind viele Schweißnähte als V-J-Kombination auszuführen, die schwieriger zu schweißen ist. Die Qualität der Zubehörteile ist beim Orbitalschweißen auch ein sehr wichtiges Kriterium, das es zu berücksichtigen gilt.

Setzen Sie sich mit uns in Verbindung, damit wir die für Ihren Bedarf geeigneten Lösungen prüfen!

GA 122 - 172 - 222 - 322

Keine Verformung und Verschmutzung der Rohre

Konzentrisches Spannen

Spannbacken serienmäßig aus **Edelstahl**

V- oder J-Fase ohne Schmiermittel

Hartmetall-Technologie, 10 x schneller als HSS-Werkzeuge

<u>Winkel:</u> - 10° in J-Form - 30°, 37,5° und 45° in V-Form

Perfekte Abdichtung gegen Späne

- Sich drehende Bauteile sind komplett in den Maschinenkörper integriert
 - Spanschutz vor der Maschine

Leichte Handhabung und einfacher Transport

Dauereinsatz

Elektrisches Drehgelenk für Umdrehungen ohne Kabelaufwicklung

AXXAIR

Standzeit der Werkzeuge

Serienmäßig mit Drehkurbel: verlängert die Standzeit der Werkzeuge

Kopiereinheit

Äussere Profilführung, die die Ovalität der Rohre berücksichtigt

<u>Einfache</u> <u>Einstellung des Stegs</u>

Einstellbar durch Nonius

Motor 1550 W

Arbeiten mit materialgerechten Drehzahlen dank Vollwellenelektronik

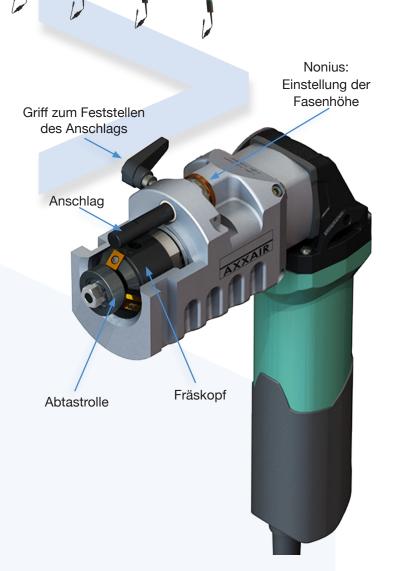
Global Process

Umrüstbar in orbitale Trenn- und Schweißmaschine

Anfasbereich					
122	ø15 - ø119mm ø5/8" - ø4,5 "				
172	ø33 - ø173 mm ø1,3 - ø6,625 "				
222	ø55 - ø228 mm ø2.35 to ø8,625 "				
322	ø141 - ø328 mm ø5,5 to ø12,75 "				

GA 122 - 172 - 222 - 322

Technische Merkmale:

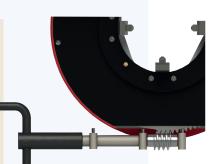

Neuer Motor 1550 W, 120 V oder 230 V :

- Elektrisches Gerät der Klasse 2. Doppelte Stromisolierung, kein Metallteil zugänglich. Längere Lebensdauer, mehr Durchzug dank patentiertem Staubschutz.
- Schwingungsbelastung gemäß der NormEN 28662: <2,5m/s², Schutzklasse: IP 20
- -Vario-Tacho-Constamatic (VTC) -Vollwellenelektronik mit Stellrad: zum Arbeiten mit materialgerechten Drehzahlen, die unter Last konstant bleiben

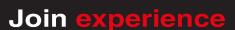
Drehzahl (6 Stufen): von 2050 bis 7300 U/min

- 0V Sicherheit: Der Motor startet nach einem Stromausfall nicht automatisch neu
- Mechanischer Schutz des Getriebes, im Kegelradgetriebe integrierter Drehmomentbegrenzer

Alle Motoren werden individuell verpackt in einem Koffer geliefert, Werkzeug inklusive



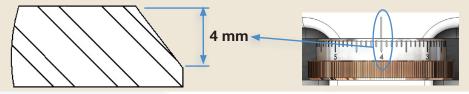
Robustheit:


- Sehr effizientes Spannsystem dank Schraube ohne Ende direkt auf der Klemmnocke eingerastet.

Einfache Wartung und Kontrolle:

- Schmierung der inneren Teile durch Schmiernippel
- Schnellerer Zugriff auf die Förderschnecke unter der Maschine

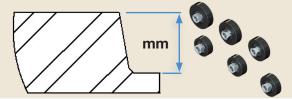
GA 122 - 172 - 222 - 322

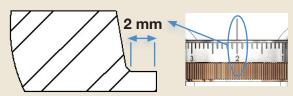

Technische Merkmale:

AXXAIR INNOVATIVE ORBITAL SOLUTIONS

Einfache Einstellung des Stegs:

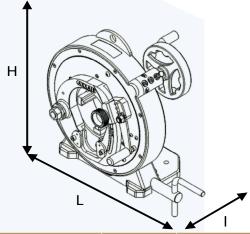
Einstellung der Fasenhöhe (V-Fase):


Zur Höheneinstellung der Fase wird der Anschlag versetzt. Es genügt hierfür, das Stellrad in die eine oder andere Richtung zu drehen, um die Höhe der Fase zu vergrößern oder zu verkleinern.



Der Noniuswert des Stellrades entspricht der **Fasenhöhe.**

Einstellung der Länge des Stegs (J-Fase):


Die Höhe der Fase wird durch die Wahl der Abtastrolle auf dem Fräskopf bestimmt. 6 Abtastrollen werden mit dem J-Fräskopf geliefert (siehe Zubehör). Durch die Einstellung des Anschlags kann die Länge des Absatzes am Ende der Fase verändert werden.

Der Noniuswert des Stellrades entspricht der **Länge des Stegs.**

Werkstoffe, die von der Maschine bearbeitet werden können:	Materialhärte zwischen:	
Alle Stahlsorten	500 und 800 MPa	
Alle Legierungsarten (Kupfer / Messing / Bronze / Aluminium)	200 und 800 MPa	

Artikelnummer Maschine mit 120V Motor	Artikelnummer Maschine mit 230V Motor	Anfasmaschine für Rohre mit folgendem Durchmesser (in mm):		Nettoge-	Abmessungen
		Mit Standardspann- backen	Zusätzliche Spannba- cken (inklusive)	wicht	(HxBxL in mm)
GA122-M1	GA122-M2	Ø29 - Ø 119	Ø 15 - Ø99	42 kg	443 x 541 x 304
GA172-M1	GA172-M2	Ø74 - Ø 173	Ø 33 - Ø116	49 kg	493 x 566 x 304
GA222-M1	GA222-M2	Ø128 - Ø 228	Ø 55 - Ø155	57 kg	548 x 594 x 304
GA322-M1	GA322-M2	Ø230 - Ø 328	Ø 141 - Ø239	71 kg	649 x 644 x 304

Bei großen Durchmessern und speziellen Anpassungen sprechen Sie uns bitte an.

